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EVALUATING THE HELMHOLTZ INTEGRAL:
PART 1 — BASIC THEORY

1. INTRODUCTION

The research described in this report was motivated by the problem of computing

the electromagnetic field scattered by a large number of metallic reflectors. This prob-
lem arises in the r.'h]dv of the nronosed new dnnn]nr Microwave Landing q‘ﬂ:fpm and
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our main concern is to determine the effects of multlple scatterings between the scat-
tering ohjects. As a first approximation to a solution of this problem it will be assumed
that the collection of reflectors consists mainly of flat metallic plates of arbitrary shape,
and the Kirchhoff theory of diffraction will be used to estimate the fields scattered by
the plates.

In the Kirchhoff theory of diffraction, the field scattered by a surface is represented
by a Heimholtz infegral, which isa rather complicated surface (double) integral evaluated

over the surface, and in Sec. 2 we shall present some new results showing how the Helm-

holtz integral has a closed form representatlon as a line integral evaluated over the boun-
dary of the reflecting surface.

In the standard far-field approximation to the Kirchhoff theory we can even do
more: If the reflecting surface is bounded by straight lines, then the far-field approxi-
mation can be reduced to the sum of a number of terms ZJj,, each term Jy being merely
a certain complex quantity evaluated at the nth vertex of the reflector. In other words,

for flat polygonal reflectors the usual far-field approximation reduces to a form which
requires no intesrations at all, and hence is extremely attractive from the standnoint of

M e fat araVTppedavaisaid QAU faady Cliala AAUALALN 1S AL VLIIITAY GAUVAGLULY C Liwlil vt ouuu LUpFLrLLLY A

economy of calculatmn These results will be presented in Sec. 4.

The results of Sec. 2 might also be applied to obtain closed form expressions for
the “exact” Helmholtz integral (rather than the far-field approximation) which involve
no integrations. This possibility will be the subject of future investigations.

. Throughout this report it will be assumed that the radiation incident on each reflec-
tor is either a plane wave or a spherical wave; however, our methods generalize to other

types of incident radiation, and only reguire that the radiction satasfy the wave eguation,

and that the scattering objects be finitely extended.

2. REDUCTION OF THE HELMHOLTZ INTEGRAL TO A LINE INTEGRAL
Notation and Definitions

8 is an open surface in euclidean 3-space which, physically, will correspond to a

metallic reflector or an aperture in an opaque screen. Unless otherwise stipulated, it

will always be assumed that S is finite in extent.

1
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WILLIAM B. GORDON

88 = poundary of .

—_—

% = unit normal to 8, and 35 is always oriented so that a point moving in & posi-
tive direction around &S appears to move in a counterciockwise direction when 7 is point-
ing towards the observer.

The Helmholtz integral is given by the right-hand side of the relation

drup = ; {ugrad H-Hgradu} - 7 dA a.1)
5

where up is the {(purported} value of the scattered field at a fixed *‘field point” P, and
H = {exp{ikr)}/r where k& = 2z/\ is the wave number and where ¥ is the vector drawn from
P to a variable point in space.

Let ? be a unit vector, which in our applications will correspond to the direction in
which a wave front is moving as it passes the field point P and let 2 be the axis which
passes through P and is parallel to . Let ¢ be the angular coordinate which corresponds
to a rotation around ¥, s¢ that if a special xyz coordinate system is chosen with &, =¥,

we have
= (xdy — ydx)/(x? + y¥). 2.2)

Equivalently, if F is a function, the line integral j'anggp can be written

_\

ExD
I, Fdp = fagF T_:___;:!fi dt (2.9)
' lexr

where T = 7(t) is any parametric representation of 3S. Then we shall say that P is an
I-peint a B-peint or an S-point aecording as 38 winds a:round g, % intersects 88, or ¢ falls

tside of 88 ‘nc & 15 defe OIALY u;uu.u‘y, the condition that P he an I- yun;v is tast

S 3 Sdsa= 27 (the sign depending on the orientation of 28), and the condition that P be
an S-point is fﬁs dy =0, If Pis a B-point, the form [ s dy is indeterminate. Physically,

the sets of I-points, B-Points, and S-points correspond (respectively) to the geomeirical
optics illuminated zone, shadow boundary zone, and shadow zone as they are predicted
by_ the Kirchhoff method. (See Ser. 3 for further discussion.)
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Preliminary Remarks

Since the reduction of a surface integral to a line integral is in one sense {rivial, we
shall interrupt our presentation at this point to discuss what is at issue here.

From Stokes’ (or Green’s) Theorem we have

ad
f pdx + gdy = (-'a—q - 'QE' dxdy.

Hence in order to reduce a surface integral f fdxdy to a line integral, we only have to
solve the equation

99 _dp _ ¢
ox " oy f (*)

for p and q. Such a solution is always possible provided only that S be simply connected.
For example, if S is convex, we can set p = 0, so that we only have to obtain g by inte-
grating aq/ox = f. (If S is not convex, there is a difficulty in defining the limits of inte-
gration.) However, such a procedure is unsatisfactory from two points of view: For the

s |
purpoeses of computatlon we have aCCuxuyuahcd uuthxus, since one uju:gj.auuu is xcquucu

to solve (¥), and a second integration is required to evaluate the line integral. In other
words, all we have done is to express the surface integral as an iterated double integral.
Also, from the standpoint of theory we have gained nothing since none of the infinite
number of solutions to (*) appear to have any geometric or physical content.

What we want therefore is a representation of the Helmholtz integral as a line inte-
gral which is in closed form, i.e., a representation as a line integral fastga in which the

3




WILLIAM B, GORDON

integrand F does not depend on § and which is valid for any member of a class of inci-
dent radiation which is given explicitly in a functional form u = uff, #, ..., ;) involving
a finite number of parameters i, ..., tp.

Statement of Results for the Plane and Spherical Wave Case

The following propositions will illustrate results of the kind indicated. We should
emphasize that the relations (2.4} and (2.5) are derived by purely mathematical pro-
cesses, involve no approximations, and hence are perfectly exact.

Proposition 1. (Plane Wave Case). Let all vectors and angles be as shown in Fig. 2, and

let u(r) = exp (ikFE).

it}

cos 8= 71 < E/r

tos B=—7-g/r

re

Fig. 2 — Piané wave case

Then o )
J‘S {u grad H - Hgrad u | - 7dA =c- fag (1 — cos 8) explikr{1+cos §)jdy
N .} 0if Pis an S-point 24)
WAI® € = 1 47 if P is an I-point.
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Proposition 2. (Spherical Wave Case). Let all vectors and angles be as is shg_wn in Fig. 3,
and let P, be the source of a spherical wave u(ro ) = (1/ry) exp (ikr,) where r, is the vector
drawn from P, to a variable point in space.

o~

cos § = ? -?/r
cos Bg= rg €/,

cos B==7 - 7/

4

Fig. 3 — Spherical wave case

Then

- kR
fs{u grad H — H grad u}-ndA = *e“ij“' {c—f [lucos(ﬂ—eo)]exp[ik(ro+r—R)]d¢}
as
(2.5)
where ¢ = 0 or 47 us before.

Remark — In Proposition 1 the “incjdent” field u is always normalized so that the
phase is zero at the field point. To obtain a result which preserves the proper phase rela-
tions as the field point P is varied one should multiply the right-hand side of (2.4) by
exp (ikR+-£) where for each field point P, R is the position vector of P drawn from some
fixed origin.
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3. GENERAIL DISCUSSION

The derivations of formuilas (2.4) and (2.5), together with a discussion of their physi-
cal significance, is given in Ref. 1, and the results of detailed numerical calculations will
be given in subsequent reports. In this section we shall discuss how these formulas are to
be used in scattering problems.

A.  As they stand, the formulas are immediately applicable o the case where § is an
aperture in an opague screen. The Kirchhoff method consists in setting each component
u of the incident field in the left-hand side of (2.4) and (2.5) equal to the value

value of unperturbed field forx in §
ufx) = )
G for x in planar set complementary te S.

The case of flat pianar reflectors is treated in the same way, with S being regarded as an
aperture, except that in the plave wave case, the incident ray Tis replaced by the reflected

ray

—
- o

£ = & - 28 0)m; {3.1)

while in the spherical wave case, the source P, is replaced with its “image” source located
symmetrically on the opposite side of the plane, More generally, for the case of curved
reflectors, S is taken to be a certain subdomain {determined by geometrical optics) of &
plane approximating an emerging wave front. ' '

B. We shall now justify the use of our I-, 8-, and B-point ferminclogy. If 8 is a plane
surface, then, from geometry, our 1, 8, and B zones chviously correspong to the geometrie
optics luminated, shadow, and shadow, and shadow boundary zones, respectively.
Suppose now that S is curved. Then our terminology is still justified because our 1 and 8
zones correspond o the geometric optics field as it is predicied by the Kirehhoff method.
The reason for this is that the line integrals in'(2.4) and (2.5) converge to zero as koo

Awrnn anfn ol Tawr AaFfiniia el e Al 7AW V.YV.N
CA\:UP'IJ 111 bci.baiii Tare yauluxug.mm LMUE Or ucnuiwut:aa, bUilG-luEJ- LT yxauc wave <ase.

Then the only way in which the line integral could fail to converge to zero as k+oeis if
the quantity r(l+cos §) remained constant over some nonzero segment of 38, (This
happens, for example, when one computed the field along the axis of a disc in the case
when £ is normal to the disc.)

C.  Although the line integrals in {(2.4) and (2.5) appear to be very well suited for the
purposes of machine caltniation, one cannot expect to be able to oblain closed form ex-
pressians for these integrals except in the simplest cases. However, one can apply the

J;' IlllLIplE U‘i. bbﬁ.ﬂiﬁﬂﬂfy t’ nase ls(.) UUE:U.II LLUSBH IUIIII exprehswns iUI bﬂe H.H.H lﬂlegfﬁis ihlieiLi
are asympiotically valid as & » oo, In applying this method one should take care to express
all variables (including v) in terms of a parameter { with the property that every i-value
corresponds to only one point of 38, The parameters r, #, and ¢ do not have this property

ai S-points,

[=3]
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From the standpoint of theory the Principle of Stationary Phase is interesting because
sugzestive of Fermat’s Princinle and 4. B, Keller’s Geometric Theory of Diffraction

11 3
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[2-4]. Consider, for example, the spherical wave case (2.5), and recall that R is constant
(since P, and P are fixed during the integration). Then according to this principle an
asymptotically valid expression is obtained which contains only a finite number of terms,
each term corresponding to a value of ¢ for which 7o + r =1, (t) + r(t) is stationary.
There exist at least two such terms, corresponding to points on 88 at which ry + r attains
its minimum and maximum values.

Recall that in the case of flat plate reflectors (cf. (A) above) the source point F, is

nmbernltes L] » 3 i1
actually the “image” source. From this remark it is easily seen that the ¢ term in (2. 5)

corresponds to the specular component of reflection.

The plane wave case is entirely similar. Let T = P_@, where @ is a variable point on
38. Then r(l+cos §) = —a + r + distance from @ to a fixed but arbitrary wave front below
S, where g is a constant (dependent on the wave front selected).

Both geometrical optics effects and edge effects contained in the Helmholtz integral
have been prekusly observed. Keller [4] obtained similar results by applying the two-

UL B YRR SR B, I S Plnwn dm bl 1hln irdamgual {9

leenSlUﬂdl rrlnL1p1e of Dba.uuud.ry L b Lo uiv uuu.uu-: INwegidl { 4. J_;

D. The formulas (2.4) and (2.5) are defintely not valid when § is infinitely extended.
The reason for this appears to be that the derivation of these formulas requires repeated
application of Stokes’ Theorem, which is only valid on finitely extended surfaces. In
particular, in the case of the infinite half-plane, the integrals converge but yield incorrect
results.

This section is concerned with the far-field approximation to the field scattered by
a flat plate whose boundary consists of straight-line segments. It will be shown how the
standard far-field approximation reduces to a form which does not involve any integra-
tions. The derivation given below is independent of the results of Sec. 2, and only
involves the use of Stokes’ Theorem and the Divergence Theorem.

The formulas given below apply to the case when S is qn agperture in en opaque
screen. To oblain corresponding resulis for the case when S is a reflector, one must
reflect the incident field ray &t as is indicated in Eq. (3.1).

We consider a (scalar) plane wave u of unit field strength incident on a plane
aperture S. The first thing we wish to establish is that there is no loss of generality in
assuming that the phase illumination is constant on S. For if  is not normal to 8 we
can apply the Helmholtz formula (2.1) to the surface §' which is the surface obtained
by projecting S onto a plane perpendicular to £, keeping a vertex of § fixed.

7
T e



WILLIAM B. GORDON

Proof. Since div {u grad H — H grad ﬁ} = 0, we have {Divergence Theorem)

{-,r+ y }ugradH=ngadu}*ﬁdA=ﬁ
: |

S FF
where $” is the surface which consists of those “sides” which, together with § and &',
form a ciosed surface §,. The minus sign appears only in the first term because the
normal 7 points outward at 8’ and ' and inward to S, at S.
But § = 0 since the sides of §"' are parallel to Z.
SPP
Hence f=4-
s &

We now assume that the incident radiation has unit strength and constant phase
illumination on the plane aperfure S

Let x4, x9, x3 be standard rectangular coordinates, and let § i;e in the xyxy plane,
Let R, 8, ¢ be spherical coordinates, with

xy =Rsinf cosyp,
o =R sin @ siny ,
x3 = R cos 8.

1f the origin of these coordinate systems is made to lie in the inferior of 8, then the
standard far-field approximation for u{P) is given by :

. , ik(1 + cos §)e*F T 4.1
* uPy=-— ( ) J e XY gudieg 1)
47 R 8
where
[x1, X2}
{4.1a}
U= {1, va] = |sin f cos ¢, sin § sin p}
(cf. Ref. 5, p. 173. Some authors commonly write —i where we write +i.)
The main point of our derivation is contained in the following lemma.
Lemma. Let & = [wy, wg] be a constant vector. Then
i [l . o .
/e o wlixsdxz § e " (wgdxy - undxg) . (4.2}
8 w2 as .
8
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Proof. Apply Stokes’ Theorem (or Green’s Theorem) to the right-hand side of (4.2).

We now apply (4.2) to (4.1), with w = ~kv, Letx = E(t) be any parametric repre-
sentation of 0§. We get

where N (4.3)
e = [cos ¢, sin ¢]

= [sin ¢, —cos ¢].

i~
T

Kemark. 1f 6 = 0, then from (4.1)

where A = area of S,

Finally, we want to reduce the right-hand side of (4.3) to a form which does not

irmgslra any intagrale T.ot § he a nlana nrﬂvdnn with N UD'I"*"IPOC Q - QJ\T eﬂch Vertex_
l.llI‘UL\’h QLLY LIIUVCRIiciode LiT v AU G pAQas el bu.; VY avia AV wa S -.., iy & &~

@, being a 2-vector in the xyxg plane., Setdy+q = @, and let Aan =dp41 — Gp. Then
for sin @ # 0, we have

1+ coséd Pl
~u{Py = . o (L Fordy),
By ="ns wr w)

where, for 1 < n < N, (4.4)

ksind 2.5 =
- sin{ zn (e &a")} Ap+ane1
In = (€ - hayp) - — exp | —i(k sin 8) er—s—/|"
(st @) 7

Proof. We have to show that the expression for J, in (4.4) is the contribution of the
nth side of the polygon § to the integral in (4.3).

A parametric representation of the nth side of S is given by
() = (1-t)ay, + tdh+1 ,0< < 1,

so that ~

dx i

= A

dt e
9




WILLIAM B. GORDON

Substituting these relations into the integrand in (4.3), we are led to an integration of
the type § g exp (ibt)d¢t where b is a certain constant, Performing all the arithmetic we
ultimately arrive at the expression for J,; in (4.4}, :

5. SUMMARY AND CONCLUSIONS

The Helmholiz integral which occurs in the Kirchhoff Theory of Diffraction
{Eq. (2.1)) has been reduced to a line integral (Egs. {2.4) and (2.5)). For the case of a
plane wave incident on a flat polygonal plate, the standard far-field approximation o the
scattered field has been further reduced to a form which involves no integrations at all,

From the standpoint of theory these line integral representations of the Helmhollz
integral are interesting because they show very clearly how the Kirchhoff theory predicts
eertain geomstrical optics and edge effects, and because they suggest certain ways in which
the Kirchhoff theory might be improved. From the standpoint of practice the line inte-
gral representations have valne because they resuif in great economy of calculation, and
we shall conclude this report with a discussion of this effect.

if N sample points are required to evaluate the line integral of a function over the
boundary of a domain, then N2 points would be required to evaluate the surface (double)
integral of the function over the domain with the same degree of precision. {More
generally, the error in numerically infegrating a function over a unit d<limensionai hyper-
cube varies as N-A/d where 4 is a constant involving bounds on the derivatives of the
" function,) For example, consider a rather small scattering surface which has a circum-
forence of about five wavelengths. Typically, ten sample peints per wavelength might be
required to numerically evaluate the line integral with an acceptable degree of precision,
so that N = 50 points would be required for the line integral and N2 = 2500 points would
be reguired for the corresponding Helmholtz (double) integral.

Now in the computer analysis of the doppler Microwave Landing System, the compu-
tation of the scattered field at a single point will require computing the complicated
interactions hetween dozens of scattering objects. Moreover, we shall be interested in
seeing how the spectrum of the received signal varies with time as an aircraft approaches
a landing, and this might require the computation of the scattered field at thousands of
points along each aircraft trajectory. Also, the trajectories, the geometrical arrangements
of the scatterers, and the parameters of the system will be varied, Hence, an increase in
the gpeed of computation by a factor of from 10 {o 100 will have a considerable effect
on our ahility to use a computer {o analyze the performance of the doppler Microwave
Landing System.
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